An update on ancillary techniques in the diagnosis of soft tissue tumors.

Andrew Horvai, MD, PhD
Clinical Professor,
Pathology
Disclosures

I have nothing to disclose.
Introduction

- Bone and soft tissue tumors are rare (<1 % of neoplasms)
- >100 unique soft tissue diagnoses in WHO 2013
- Goal of diagnosis: reproducible classification of lesions with differing clinical behavior and prognosis
- H&E might not be enough
 - Sensitivity: smaller biopsies
 - Specificity: overlapping histologic features
Ancillary techniques

- Immunohistochemistry
 - Lineage “specific”
 - Indicators of genetic and molecular abnormalities

- Molecular and Genetic testing
 - Available techniques
 - Advantages and Limitations
 - Selected examples
Immunohistochemistry (IHC)

1. Lineage specific proteins
2. Indicators of *genetic* and *molecular* abnormalities (amplifications, deletions, translocations, point mutations)
IHC: Lineage “specific” proteins

- Classic approach
 - Cytoplasmic: Desmin, keratin, actins, S-100, CD34, CD31
 - Nuclear transcription factors
 - Skeletal muscle: Myogenin
 - Neural crest: SOX10
 - Others: SOX9, ERG, SATB2

- Gene expression profiling
 - MUC4
 - Others: DOG1, TLE1
Myogenin

- Master regulator of skeletal muscle differentiation
- ~100% specific (myf4 monoclonal) for rhabdomyoblastic differentiation
 - Rhabdomyosarcoma (all types)
 - Heterologous rhabdomyoblastic differentiation
 - Triton tumor, dedifferentiated liposarcoma, myxoid liposarcoma, Wilms tumor
- Can help distinguish subtypes of rhabdomyosarcoma
Myogenin

Alveolar RMS

Embryonal RMS

Myogenin

Myogenin
SOX10

- **SRY-related HMG box transcription factor**
- Sensitive for neural crest-derived tumors
 - Melanoma
 - Schwannoma, neurofibroma (>99%)
 - Malignant peripheral nerve sheath tumor (50%, focal)
- Specificity
 - Negative in synovial sarcoma, GIST, smooth muscle
 - Positive in astrocytomas, myoepitheliomas, breast carcinoma (10%)
SOX10

MPNST

Synovial sarcoma

SOX10

SOX10
IHC: Lineage specific proteins, gene expression profiling

- **MUC4**
 - Glycoprotein on glandular epithelium
 - Highly expressed in
 - Low-grade fibromyxoid sarcoma
 - Hyalanizing spindle cell tumor with giant rosettes
 - Sclerosing epithelioid fibrosarcoma t(7;16) positive

- **Negative**
 - Perineurioma, MPNST, desmoid, myxofibrosarcoma
Low-grade fibromyxoid sarcoma
IHC: Indicators of genetic changes

- Amplification
 - MDM2, CDK4

- Chromosomal translocations
 - STAT6
 - Others: FLI1, TFE3

- Deletion
 - INI1
 - Rb

- Point mutation
 - β-Catenin
 - Others: IDH1, BRAF
- **Liposarcoma**
 - Well-differentiated
 - Dedifferentiated

- **Osteosarcoma**
 - Parosteal
 - Central low-grade

IHC: Amplification

Diagram showing the amplified region on 12q 13.3 - 12q 15.

- 56Mb
- 67Mb
- DDIT3
- CDK4
- HMGA2
- MDM2

Graphical representation indicating the amplified regions associated with various subtypes of sarcoma.
MDM2 / CDK4

Well-differentiated liposarcoma

De-differentiated liposarcoma
Parosteal osteosarcoma

MDM2, CDK4

MDM2 / CDK4
IHC: Chromosomal translocation

- STAT6
- Transcription factor, moves to nucleus when activated (phosphorylated)
- Fusion $NAB2-STAT6$ in solitary fibrous tumor \rightarrow abnormal nuclear localization of STAT6
 - Sensitivity 98%
 - Specificity >90
 - Dedifferentiated liposarcoma
STAT6

Solitary fibrous tumor
- Dedifferentiated liposarcoma
Dedifferentiated liposarcoma

STAT6

INI1 (SNF5/SMARCB1)

Chromatin remodeling, tumor suppressor, constitutively expressed

Loss of expression

- Epithelioid sarcoma (gene deletion)
- Atypical teratoid rhabdoid tumor (inactivation)
- Rhabdoid tumor (inactivation)
- Poorly differentiated chordoma (?)
INI1 (loss)

Extrarenal rhabdoid tumor
IHC: Gene deletion or mutation

- Rb
- Retinoblastoma gene 13q14
- Tumor suppressor
- Deleted or mutated
 - Spindle cell lipoma
 - Pleomorphic lipoma
 - Mammary type myofibroblastoma
 - Cellular angiofibroma
- Retained in
 - Other benign and malignant lipomatous tumors
 - Solitary fibrous tumor
Rb (complete loss)

Spindle cell lipoma
IHC: Point mutation

- β-catenin
- Encoded by *CTNNB1* gene, Wnt signaling pathway
- Desmoid tumor: mutations in *CTNNB1* (sporadic) or *APC* (Gardner syndrome) → abnormal localization
 - Normal cells: membrane
 - Scar, GIST, smooth muscle: membrane
 - Desmoid fibromatosis: nuclear (+ cytoplasm) (70-90%)
Nuclear β-catenin

Desmoid fibromatosis
Genetic and molecular testing

- **Purpose**
 - **Classification:**
 - Separation of tumors into clinically meaningful categories based on reproducible changes
 - **Prognostic:**
 - Alveolar versus embryonal rhabdomyosarcoma
 - Myxoid versus well-differentiated liposarcoma
 - **Predictive:**
 - Therapeutic target from fusion gene product

- **Techniques**
 - **Cytogenetic:** Karyotype, FISH
 - **Molecular:** RT-PCR, Sanger sequencing, MLPA, array
Cytogenetics

<table>
<thead>
<tr>
<th></th>
<th>Karyotype</th>
<th>FISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue source</td>
<td>Fresh, dividing cells</td>
<td>FFPE, cyto smears, frozen</td>
</tr>
<tr>
<td>Turnaround</td>
<td>>1 wk</td>
<td>~ 1 wk</td>
</tr>
<tr>
<td>Specificity</td>
<td>Shotgun approach</td>
<td>Directed approach</td>
</tr>
<tr>
<td>Advantages</td>
<td>Direct correlation between morphology and genetics</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Low resolution</td>
<td></td>
</tr>
</tbody>
</table>
Cytogenetics:
33 year old woman, knee mass
Karyotyping: Synovial sarcoma

\(t(X;18) \)
Cytogenetics: FISH

Fluorescence In Situ Hybridization

Labeling with fluorescent dye

Denature & Hybridize

probe DNA

Source: National human genome research institute
77 year old man, left femur mass, cough
Small cell carcinoma

Ewing/PNET

Lymphoma (DLBCL)
FISH: Ewing sarcoma

EWSR1 rearrangement
EWSR1 rearrangements

<table>
<thead>
<tr>
<th>Partner</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLI1, ERG, ETV1, EIAF, FEV, others</td>
<td>Ewing sarcoma family of tumors</td>
</tr>
<tr>
<td>ATF1, CREB1</td>
<td>Clear cell sarcoma</td>
</tr>
<tr>
<td></td>
<td>Angiomatoid fibrous histiocytoma</td>
</tr>
<tr>
<td>NR4A3</td>
<td>Extraskeletal myxoid chondrosarcoma</td>
</tr>
<tr>
<td>WT1</td>
<td>Desmoplastic small round cell tumor</td>
</tr>
<tr>
<td>DDIT3</td>
<td>Myxoid liposarcoma</td>
</tr>
<tr>
<td>POU5F1</td>
<td>Myoepithelial tumors</td>
</tr>
</tbody>
</table>
Molecular genetics

<table>
<thead>
<tr>
<th></th>
<th>RT-PCR</th>
<th>Next gen sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue source</td>
<td>Frozen > FFPE</td>
<td>Frozen, + normal control</td>
</tr>
<tr>
<td>Turnaround</td>
<td>< 1-2 days</td>
<td>> 1 wk</td>
</tr>
<tr>
<td>Specificity</td>
<td>Highly directed</td>
<td>Shotgun approach</td>
</tr>
<tr>
<td>Advantages</td>
<td>High specificity</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>No correlation between morphology and genetics</td>
<td></td>
</tr>
</tbody>
</table>
43 year old woman, thigh mass
Synovial sarcoma

SYT-SSX fusion

Extraskeletal myxoid chondrosarcoma

EWSR1-NR4A3 fusion
PCR: translocation

“High throughput” assays

- Array based sequencing
New markers identified by high throughput methods

<table>
<thead>
<tr>
<th>Genetics</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYH9-USP6</td>
<td>Nodular fasciitis</td>
</tr>
<tr>
<td>NAB2-STAT6</td>
<td>Solitary fibrous tumor</td>
</tr>
<tr>
<td>t(1;10)(p22;q24)</td>
<td>Myxoinflammatory fibroblastic sarcoma</td>
</tr>
<tr>
<td></td>
<td>Hemosiderotic fibrolipomatous tumor</td>
</tr>
<tr>
<td>HEY1-NCOA2</td>
<td>Mesenchymal chondrosarcoma</td>
</tr>
<tr>
<td>CIC-DUX4</td>
<td>Ewing-like sarcoma</td>
</tr>
<tr>
<td>BCOR-CCNB3</td>
<td>Ewing-like sarcoma</td>
</tr>
</tbody>
</table>
Molecular genetics of sarcoma

![Graph showing the increase in the number of tumors and genetic/molecular aberrations over time.]

- Green line: # of tumors characterized
- Yellow line: # of genetic/molecular aberrations

Time:
- 1960
- 1970
- 1980
- 1990
- 2000
- 2010
- 2020
Take-home messages

- Lineage-specific is a relative term
- IHC for nuclear transcription factors offer advantages over older cytoplasmic proteins
- IHC can indirectly detect tumor-specific genetic and molecular abnormalities
- Gene and molecular abnormalities can be detected directly by more specialized methods
- High throughput methods can rapidly screen an entire tumor genome and may allow personalized medicine
Solid Tumors Test Directory

http://www.amptestdirectory.org/directory/st_test_list.php