Update on Infectious Enterocolitides and the Diseases That They Mimic

Laura W. Lamps, M.D.
Professor and Vice-Chair for Academic Affairs
University of Arkansas for Medical Sciences
Little Rock, AR
Piranha

Green = Legal/ Red = illegal
Blue = Permit or captive bred (NM)
GI Infectious Diseases are Common Throughout the World

- Transplant patients
- Immunocompromised patients
- Immigration/international travel
- Food/water supply issues

Enteric infectious diseases are second leading cause of death worldwide, after cardiovascular disease
Naturally Occurring Foodborne Diseases
CDC Estimates for USA, 2010-11

• 47.8 million illnesses/year
• 128,000 hospitalizations/year
• 3000 deaths/year
• Many food-borne outbreaks and sporadic cases unrecognized
Naturally Occurring Foodborne Diseases
CDC Estimates for USA, 2010-11
Cases with Identified Pathogens

• 47.8 million illnesses/year
 – 9.4 million illnesses/year
• 128,000 hospitalizations/year
 – 55,961 hospitalizations/year
• 5000 deaths/year
 – 1351 deaths/year
Common Etiologic Agents of Infectious Gastroenteritis in USA

- **Food-associated**
 - *Salmonella*
 - *S. aureus*
 - *Shigella*
 - *Campylobacter*
 - *C. perfringens*
 - *B. cereus*
 - EHEC

- **Water-associated**
 - *Giardia*
 - *Shigella*
 - Norwalk Virus (norovirus)
 - *Salmonella*
 - *Campylobacter*
 - *C. parvum*
 - EHEC
Top Domestically-Acquired Pathogens Contributing to Foodborne Illness, Hospitalization, and/or Death

<table>
<thead>
<tr>
<th>Foodborne Illness</th>
<th>Foodborne illness-associated hospitalization</th>
<th>Foodborne illness-associated death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norovirus</td>
<td>Norovirus</td>
<td>Norovirus</td>
</tr>
<tr>
<td>Salmonella (nontyphoid)</td>
<td>Salmonella (nontyphoid)</td>
<td>Salmonella (nontyphoid)</td>
</tr>
<tr>
<td>C. perfringens</td>
<td>Campylobacter</td>
<td>Listeria</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>Toxoplasma</td>
<td>Campylobacter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxoplasma</td>
</tr>
</tbody>
</table>
Foods Commonly Associated with GI Infection

<table>
<thead>
<tr>
<th>Raw Dairy</th>
<th>Shellfish</th>
<th>Meat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>Vibrio</td>
<td>Salmonella</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>Hepatitis A</td>
<td>Campylobacter</td>
</tr>
<tr>
<td>Brucella</td>
<td>Norwalk virus</td>
<td>Yersinia</td>
</tr>
<tr>
<td>E. coli</td>
<td>Rotavirus</td>
<td></td>
</tr>
<tr>
<td>Listeria</td>
<td></td>
<td>Salmonella</td>
</tr>
</tbody>
</table>

Adapted from Fang et al Inf Dis Clin N Amer 5:681-701, 1991
Naturally-Occurring Food-Borne Outbreaks

- (2010) *Salmonella* + salami: 184 infections; 1.2 million lbs. recalled
- (2009) *E. coli* + ground beef: 26 infections in 8 states; 545,699 lbs. recalled
- (1998) *Listeria* + hotdogs: 17 deaths; 30 million pounds recalled
- (1990s) Raspberries + *Cyclospora*: 2500 infections in 21 states
Enteric Infections Acquired from Animals (rare!)

<table>
<thead>
<tr>
<th></th>
<th>Birds</th>
<th>Cats</th>
<th>Dogs</th>
<th>Goats</th>
<th>Hamsters</th>
<th>Monkeys</th>
<th>Sheep</th>
<th>Snake</th>
<th>Turtle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Campylobacter</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Salmonella</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Yersinia</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Giardia</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongyloides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Challenges for Pathologists When Evaluating a Specimen for an Infectious Process

• Everything is in formalin
 – No cultures
 – Possibly no molecular

• Available resources/techniques that aid in diagnosis may be limited/unavailable, expensive, or unknown to pathologist

• Lack of pertinent history

• Patient given abx before biopsy procedure
Challenges for Pathologists When Evaluating a Specimen for an Infectious Process

• The training that most of us get in ID pathology is at odds with the worldwide frequency of infectious diseases
 – Most pathology training in infectious diseases is in microbiology and divorced from examination of tissue sections

• Ideal diagnostic environment involves morphology, microbiology, and often molecular tests
Anatomic Pathologist’s Goals When Evaluating a Specimen for Infectious Processes

- Distinguish infectious processes from other processes (ischemia, chronic idiopathic inflammatory bowel disease)
- Try (enthusiastically!) to identify infectious organism or pattern of infection
 - Biopsy often out long before culture result
 - Tissue often not preserved for other studies
- Be aware of resources/techniques that aid in diagnosis
Why should surgical pathologists care about bugs?

• Many can’t be cultured—must recognize patterns of disease in tissue
 – HIV
 – HCV
 – Hantavirus
 – SARS
 – *Pneumocystis jiroveci (carinii)*
 – Coccidians
Aids to Diagnosis

• Immunostains
 – Availability

• Special histochemical stains
 – Gram: hard to tell enteric pathogens from normal commensals
 – Silver impregnation: high background

• Culture
 – Organism may be fastidious
 – Can’t tell virulent from nonvirulent strains
 – Patient may have gotten abx
Aids to Diagnosis

• Serologic studies
 – Many cross-reactive organisms
 – Need acute and convalescent titers
 – False negatives in immunocompromised, very old, or very young patients

• Molecular testing
 – Formalin fixation limits yield
 – Block may be exhausted
ID Molecular Testing and FFPE Tissue

- Can be done
- Targets must be SMALL (<500 base pairs)
- Primers should target genes exclusively present in pathogenic strains
- Molecular testing must be correlated with histologic findings
Responsibilities of the Anatomic Pathologist

• Optimize opportunities to intervene and guide the workup:
 – Get material for culture, molecular studies
 – Rapid evaluation techniques
 • Frozen section
 • Touch preps
 • Air dried smears
 • Smears, touch preps, and frozens can be used for same-day special stains
Responsibilities of the Anatomic Pathologist

• Formulate final anatomic diagnoses that correlate clinical history with
 – Histology
 – Special stains
 – Immunologic studies
 – Molecular studies
 – Cultures (if possible)
Helpful History

- Travel
- Food intake
- Work/environmental exposure
- Animal exposure/zoonoses
- Tick, other vector exposure
- Sexual practices
- Immune status
General Classification of Histologic Patterns in Infectious Enterocolitides

- Minimal or no inflammation
- Acute infectious-type enterocolitis/ASLC
- More specific or suggestive patterns:
 - Pseudomembranes
 - Granulomas
 - Diffuse histiocytic infiltrate
 - Architectural distortion
 - Viral inclusions or other visible organisms

Histologic pattern directs diagnostic algorithm
Infections Producing Minimal or No Inflammation

- *Vibrio* and non-*Vibrio cholerae*
- Enteropathogenic and Enteroadherent *E. coli*
- Spirochetosis
- *Neisseria* species
- Many enteric viruses
HIV Enterocolopathy
Infections Producing ASLC/AITC Pattern

- *Campylobacter* species
- *Shigella*
- *Aeromonas*
- Syphilis (+/- plasma cells)
- Occasionally:
 - *Yersinia*
 - *C. difficile*
 - Non-typhoid *Salmonella*
• PMN infiltrate
• Intact architecture
• +/- crypt abscesses
• No basal plasma cells
• Surface damage
• Most common histologic pattern in enteric infections
Resolving Infection
Infections Producing More Specific Diagnostic Features

<table>
<thead>
<tr>
<th>Pseudomembranes</th>
<th>Granuloma Formation</th>
<th>Diffuse histiocytic</th>
<th>Architectural Distortion</th>
<th>Inclusions/Organisms Visible on H&E</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. difficile</td>
<td>Yersinia</td>
<td>R. equi</td>
<td>Salmonella</td>
<td>CMV/HSV</td>
</tr>
<tr>
<td>EHEC</td>
<td>M. Tb</td>
<td>MAI</td>
<td>Shigella</td>
<td>EAEC</td>
</tr>
<tr>
<td>Rarely Shigella</td>
<td>Fungi</td>
<td>Whipple’s Disease</td>
<td>Amoeba</td>
<td>Spirochetosis</td>
</tr>
<tr>
<td>Actinomycosis</td>
<td></td>
<td>Sometimes Aeromonas</td>
<td>Fungi</td>
<td>Amoeba</td>
</tr>
</tbody>
</table>
GI Infectious Diseases That Mimic Other Processes

<table>
<thead>
<tr>
<th>Mimics of Crohn’s</th>
<th>Mimics of UC</th>
<th>Mimics of Ischemia</th>
<th>Mimics of Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>Salmonella</td>
<td>EHEC</td>
<td>Coccidians</td>
</tr>
<tr>
<td>Shigella</td>
<td>Shigella</td>
<td>Aspergillus</td>
<td>Histoplasmosis</td>
</tr>
<tr>
<td>Yersinia</td>
<td>E. histolytica</td>
<td>Mucor</td>
<td>EAEC</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>LGV</td>
<td>CMV</td>
<td></td>
</tr>
<tr>
<td>Aeromonas</td>
<td>Syphilis</td>
<td>C. perfringens</td>
<td></td>
</tr>
<tr>
<td>E. histolytica</td>
<td></td>
<td>C. difficile</td>
<td></td>
</tr>
<tr>
<td>CMV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IBD vs. Infection
Specific GI Infectious Disease Examples

• Commonly encountered
 – Responsible for majority of food-related illnesses worldwide

• Mimic other inflammatory conditions
Campylobacter species

- Most common stool isolate in USA
- Contaminates meat, poultry, water, milk
 - Fecal-oral transmission also possible
- Common pathogen associated with focal active colitis pattern

Schneider, Havens, Goldblum, et al. AJSP 30: 2006
<table>
<thead>
<tr>
<th></th>
<th>Fever</th>
<th>Diarrhea</th>
<th>Infective Dose</th>
<th>Prognosis</th>
<th>Pattern</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>Usually</td>
<td>Yes, +blood, WBC</td>
<td>500 bugs</td>
<td>Usually self-limited; relapse common</td>
<td>AITC</td>
<td>Arthropathy, GBS</td>
</tr>
<tr>
<td>Salmonella (Typhoid)</td>
<td>Yes, high</td>
<td>Yes, at 2-3 weeks</td>
<td>1000</td>
<td>Need abx; may cause sepsis</td>
<td>IBD mimic</td>
<td>Rash, leukopenia, HSM</td>
</tr>
<tr>
<td>Salmonella (non-Typhoid)</td>
<td>Yes</td>
<td>Yes</td>
<td>1000</td>
<td>Good with abx</td>
<td>AITC; rarely mimics IBD</td>
<td>Milder illness</td>
</tr>
<tr>
<td>Shigella</td>
<td>Yes</td>
<td>Yes, +blood, mucus, pus</td>
<td>10-100</td>
<td>Need abx; may cause sepsis, perforation</td>
<td>AITC or IBD mimic</td>
<td>Constitutional sx; HUS</td>
</tr>
</tbody>
</table>
• Lamina propria neutrophils
 – More prominent superficially

• +/- Cryptitis and crypt abscesses

• Preservation of crypt architecture
Campylobacter

• Diagnosis:
 – Culture is mainstay
 • Patients often on empiric abx therapy prior to biopsy
 – Darkfield examination of stool smears
 – Campy antigens on immunoassay
 – Molecular testing
Salmonella species
Clinical

• Typhoid (S. Typhi or Paratyphi)
 – Rising fever
 – Abdominal pain
 – Rash
 – Leukopenia
 – Hepatosplenomegaly
 – Diarrhea @ 2-3 weeks

• Non-typhoid serotypes (Enteritidis, Muenchen, Typhimurium)
 – Milder illness
 – Nausea
 – Vomiting
 – Milder fever
 – Watery diarrhea
Common Enteric Infections
Clinical Features

<table>
<thead>
<tr>
<th></th>
<th>Fever</th>
<th>Diarrhea</th>
<th>Infective Dose</th>
<th>Prognosis</th>
<th>Pattern</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>Usually</td>
<td>Yes, +blood, WBC</td>
<td>500 bugs</td>
<td>Usually self-limited; relapse common</td>
<td>AITC</td>
<td>Arthropathy, GBS</td>
</tr>
<tr>
<td>Salmonella (Typhoid)</td>
<td>Yes, high</td>
<td>Yes, at 2-3 weeks</td>
<td>1000</td>
<td>Need abx; may cause sepsis</td>
<td>IBD mimic</td>
<td>Rash, leukopenia, HSM</td>
</tr>
<tr>
<td>Salmonella (non-Typhoid)</td>
<td>Yes</td>
<td>Yes</td>
<td>1000</td>
<td>Good; +/- abx</td>
<td>AITC; rarely mimics IBD</td>
<td>Milder illness; nausea and vomiting</td>
</tr>
<tr>
<td>Shigella</td>
<td>Yes</td>
<td>Yes, +blood, mucus, pus</td>
<td>10-100</td>
<td>Good with abx; may cause sepsis, perforation</td>
<td>AITC or IBD mimic</td>
<td>Constitutional sx; HUS</td>
</tr>
</tbody>
</table>
Salmonella species
Gross Pathology

- Favors ileum, appendix, right colon
- Thickened wall, raised nodules over Peyer patches
- Ulceration and necrosis
- Mesenteric adenopathy
- Milder findings in non-typhoid species, but considerable overlap
Ulcers typically occur over Peyer’s patches, with necrosis of mucosa.

Courtesy Dr. Brian West
Architectural distortion, crypt abscesses
Histiocytes and mononuclear cells are most prominent, with fewer neutrophils
Salmonella

• Features that mimic CIIBD:

 – Apthous, linear, and/or deep ulcers
 – Crypt distortion
 – Right side distribution with ileal involvement may mimic Crohn’s in particular
Non-typhoid *Salmonella*
Salmonella species
Differential Diagnosis

• Stool cultures help resolve!
• Other enteric pathogens
 – Longer incubation period (10-15 days)
 – Neutrophils less prominent
 – Granulomas unusual
• Idiopathic IBD
 – Can see significant crypt distortion
Shigella species

- Invasive, virulent bacteria
- Typically from contaminated water
- Fecal-oral transmission also possible
Common Enteric Infections
Clinical Features

<table>
<thead>
<tr>
<th></th>
<th>Fever</th>
<th>Diarrhea</th>
<th>Infective Dose</th>
<th>Prognosis</th>
<th>Pattern</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>Usually</td>
<td>Yes, +blood, WBC</td>
<td>500 bugs</td>
<td>Usually self-limited; relapse common</td>
<td>AITC</td>
<td>Arthropathy, GBS</td>
</tr>
<tr>
<td>Salmonella (Typhoid)</td>
<td>Yes, high</td>
<td>Yes, at 2-3 weeks</td>
<td>1000</td>
<td>Need abx; may cause sepsis</td>
<td>IBD mimic</td>
<td>Rash, leukopenia, HSM</td>
</tr>
<tr>
<td>Salmonella (non-Typhoid)</td>
<td>Yes</td>
<td>Yes</td>
<td>1000</td>
<td>Good; +/- abx</td>
<td>AITC; rarely mimics IBD</td>
<td>Milder illness; nausea and vomiting</td>
</tr>
<tr>
<td>Shigella</td>
<td>Yes</td>
<td>Yes, +blood, mucus, pus</td>
<td>10-100</td>
<td>Good with abx; may cause sepsis, perforation</td>
<td>AITC or IBD mimic</td>
<td>Constitutional sx; HUS</td>
</tr>
</tbody>
</table>
Shigella species
Pathologic Findings

- Favors left colon
- +/- pseudomembranes
- Early shigellosis has AITC pattern
- Later in the disease there is often significant mucosal damage, architectural distortion
Shigella

• Features that mimic CIIBD
 – Mucosal destruction with significant architectural distortion
 – Left side distribution can mimic ulcerative colitis in particular
Shigellosis with marked architectural distortion

from Riddell, Lewin, and Weinstein: *Gastrointestinal Pathology and Its Clinical Implications*
Pseudomembranous Shigellosis

Courtesy Dr. John Hart
Yersinia (enterocolitica and pseudotuberculosis)

- One of the most common causes of bacterial enteritis in N. America and Europe
- Wide variety of acute and chronic GI manifestations
- Contaminates meat, shellfish, poultry, milk and dairy, water
Chitterlings
also Chitlins or Chitlings

• “The small intestines of pigs, especially when cooked and eaten as food.”
 – Probable diminutive of Old English *cieter*, intestines

The Chitterling Data
Tauxe et al

• CDC studied a group of children in Atlanta in 1990 with gastroenteritis secondary to YE (by stool isolate)
• Outbreaks clustered around holidays
• More than 50% exposed to raw pork intestines during household chitterling preparation
• Similar data acquired in Belgium where eating raw and undercooked pork is common
Yersinia
Gross Pathology

- Involves ileum, right colon, and appendix preferentially
- Thickened wall with apthous and linear ulcers
- Associated lymphadenopathy
Granulomatous Appendicitis
Yersinia enterocolitica
Yersinia
Mimic of Crohn’s Disease

- Yersiniosis
 - Isolated appendiceal involvement
 - More acute clinical onset

- Crohn’s
 - Disease in multiple sites
 - Creeping fat
 - Fistulae
 - Histologic changes of chronicity

Lamps, Madhusudhan, Greenson et al. AJSP 25: 2001
Lamps Madhusudhan, Havens et al. AJSP 27: 2003
Aeromonas species

• Originally recognized as pathogen in turtles and other water dwelling creatures, but only recently in humans
 – *A. hydrophila*, *A. veronii*, and *A. sobria* now recognized as important to human GI disease

• Associated with water sources, fish, seafood, veggies, raw milk, ice cream, meat
Aeromonas sp.

- Particularly a problem in young children (< one year of age), the elderly, and immunocompromised patients, but can affect anyone
- Summer peak
- *Pleisiomonas* species probably emerging as similar pathogen
Clinical Findings

• Bloody diarrhea, often mucoid
• Nausea, vomiting, crampy abdominal pain
• May have fever and fecal WBCs
• Duration of symptoms may range from days to much longer
Pathologic Findings

- Often segmental distribution
- Edema, friability, erosions, exudate, loss of vascular pattern
 - DDx: Ischemia, Crohn’s disease
- Usually shows AITC pattern
 - Ulceration, focal architectural distortion may be seen, mimicking IBD
Aeromonas-ileocecal ulceration
Aeromonas
Aeromonas species

- *Aeromonas* is now an accepted cause of infectious enterocolitis in humans
- Cultures are key to diagnosis
 - Some recommend culturing all new onset IBD patients, especially kids
 - Molecular testing also available
- May mimic Crohn’s both grossly and histologically

E. histolytica

- Infects 10% of world population
- Clinical: ranges from asymptomatic to fulminant colitis
- In USA, associated with homosexual population and unsanitized water
E. histolytica

- **Typical**
 - Flask shaped ulcers
 - Right sided involvement

- **Atypical**
 - Pseudomembranes
 - Toxic megacolon
 - Crohn’s-like
 - Skip lesions
 - Linear or geographic ulcers
 - Architectural distortion
 - Organisms may be mistaken for macrophages
E. histolytica: architectural distortion and skip lesions mimic Crohn’s disease
• Foamy cytoplasm
• Pale, round, eccentric nuclei
• Ingested red cells are pathognomonic of *E. histolytica*
Enterohemorrhagic *E. coli*

- Usually serotype 0157:H7
- Causes “ischemic-pattern” colitis
 - Shiga-like toxins cause thrombosis
- Contaminates meat, produce, water
- Children and elderly at increased risk
 - TTP, HUS
Enterohemorrhagic *E. coli*
Clinical Features

- Crampy pain, watery and/or bloody diarrhea
- Right sided colitis
- Mild or no fever
- Rare fecal leukocytes
• Hemorrhagic necrosis
• Ulceration with fibrinopurulent exudate
• Variably present pseudomembranes, microthrombi
Enteric Viruses

- Rarely biopsied
- Adenovirus, rotavirus, coronavirus, enterovirus
- Diagnosis usually made by stool culture/immunoassay
Diagnosis of GI Infectious Diseases

• Many infectious entities are underdiagnosed
 – HIGH INDEX OF SUSPICION!

• Cultures may not be useful/available
 – Patient already got antibiotics
 – Everything is in formalin

• Serologies
 – False negatives
 – Cross-reactivity

• Molecular testing
Utility of Special Stains in Evaluation of Biopsies for GI Infections

• Monkemuller et al, AJCP 2000
 – HIV patients
 – 28 months
 – Sensitivity and specificity for CMV diagnosis on H&E were 97% and 100%
 – AFB/GMS stains did not identify previously diagnoses infection in any patient
 – Long-term follow-up revealed no missed infections on H&E
 – Stains doubled cost
Big unexplained ulcer

? Elderly Pt

Yes

CMV

Get history, tailor workup to that

No

Immunocompromised Pt

Yes

CMV

?HSV

GMS

?AFB
Essentially Normal Bx in Immunocompromised Patient

- Increased apoptotic epithelial cells
 - CMV
 - Adenovirus

- Don’t overlook spirochetosis, coccidians, or Giardia!

- Are they severely immunocompromised?
 - No
 - Done!
 - Yes
 - Get history, consider GMS, CMV
Summary

• Infectious (including food-borne) gastrointestinal disease is common, and probably underdiagnosed

• Microbiological and molecular techniques are invaluable partners to biopsy

• Infectious processes may mimic other types of IBD

• Pathologists and lab workers are essential to evaluating food-borne outbreaks
It's a great party until someone ends up outside wearing a lampshade on their head.