ANNUAL REVIEW

Reviewed by:	Reviewed by:	Date
Refer to coversheet in front of method | | |

PRINCIPLE

INTENDED USE

BARB reagent, in conjunction with SYNCHRON LX® System(s), UniCel® DxC 600/800 System(s) and SYNCHRON® Systems Drugs of Abuse Testing (DAT) Urine Calibrators, is intended for the qualitative determination of barbiturates in human urine at a cutoff value of 200 ng/mL.

The BARB assay provides a rapid screening procedure for determining the presence of barbiturates (BARB) and its metabolites in urine. This test provides only a preliminary analytical result; a positive result by this assay should be confirmed by another generally accepted non-immunological method such as thin layer chromatography (TLC), gas chromatography (GC), or gas chromatography/mass spectrometry (GC/MS). GC/MS is the preferred confirmatory method.¹,²

Clinical consideration and professional judgement should be applied to any drug of abuse test result, particularly when preliminary positive results are used.

CLINICAL SIGNIFICANCE

Barbiturates are a class of central nervous system depressants that are used as sedatives and hypnotics. Measurements of barbiturates are used in the diagnosis and treatment of barbiturate use or overdose, and in monitoring the presence of barbiturates to ensure appropriate therapy.

METHODOLOGY

This assay utilizes a homogenous enzyme immunoassay method.³ The BARB reagent is comprised of a specific antibody which can detect most analyte in urine. A drug-labeled glucose-6-phosphate dehydrogenase (G6PDH) conjugate competes with any free drug from the urine sample for a fixed amount of antibody binding sites. In the absence of free drug from the sample, the drug-labeled G6PDH conjugate is bound by the specific antibody and the enzyme activity is inhibited. This reaction creates a direct relationship between the presence of drug and enzyme activity. The G6PDH enzyme activity is determined spectrophotometrically by measuring its ability to convert nicotinamide adenine dinucleotide (NAD) to NADH (reduced form).

The SYNCHRON® System(s) automatically proportions the appropriate sample and reagent volumes into a cuvette. The ratio for BARB is one part sample to 25 parts reagent. The System monitors the change in absorbance at 340 nanometers to calculate and express a reaction rate. A qualitative result is reported based on a comparison of the sample rate to the calibrated cutoff rate.
CHEMICAL REACTION SCHEME

(a) $\text{Ab} + \text{BARB}_{\text{(free)}} + \text{BARB-G6PDH(Conj)} \rightarrow \text{Ab-BARB} + \text{BARB-G6PDH(Conj)}$ (active enzyme)

(b) $\text{Ab} + \text{BARB-G6PDH(Conj)} \rightarrow \text{Ab-BARB-G6PDH(Conj)}$ (inactive enzyme)

$\text{NAD}^+ + \text{Glucose-6-Phosphate} \stackrel{\text{(active enzyme)}}{\rightarrow} \text{NADH} + \text{H}^+ + \text{6-phosphogluconate}$

GENERAL DISCUSSION

Barbiturate-derivatives such as phenobarbital are useful in the management of epileptic seizures. When barbiturate is ingested, it is rapidly metabolized and excreted into urine. The ratio of unchanged drug to metabolites varies depending upon the duration of action. Short-acting barbiturates will generally be excreted in urine as metabolites, while the long-acting barbiturates will primarily appear unchanged. The most commonly abused barbiturates are short- to intermediate-acting agents (24 hours or less), such as secobarbital, pentobarbital and amobarbital. Barbiturate overdose produces shock syndrome and can result in death from respiratory depression.

SPECIMEN

TYPE OF SPECIMEN

Freshly collected urine samples should be used for testing. Collect urine samples in glass or plastic (i.e., polypropylene, polycarbonate, polyethylene) containers. Urine samples should be collected in the manner routinely used for drug screening analysis. Samples should be at room temperature for testing.

SPECIMEN STORAGE AND STABILITY

If the sample cannot be analyzed immediately, it may be stored at +2°C to +8°C for up to 7 days. If longer storage is required or when a split sample collection method is used, samples should be stored frozen at -20°C or less.

ADDITIONAL SPECIMEN STORAGE AND STABILITY CONDITIONS AS DESIGNATED BY THIS LABORATORY:

Refer to "Sample Integrity in Chemistry" write up in "Policies and Procedures" manual

SAMPLE VOLUME

The optimum volume, when using a 0.5 mL sample cup, is 0.3 mL of sample. For optimum primary sample tube volumes and minimum volumes, refer to the Primary Tube Sample Template for your system.

CRITERIA FOR UNACCEPTABLE SPECIMENS

Refer to the PROCEDURAL NOTES section of this chemistry information sheet for information on unacceptable specimens.
CRITERIA FOR SAMPLE REJECTION AS DESIGNATED BY THIS LABORATORY:

Refer to “Sample Integrity in Chemistry” write up in “Policies and Procedures” manual

PATIENT PREPARATION

SPECIAL INSTRUCTIONS FOR PATIENT PREPARATION AS DESIGNATED BY THIS LABORATORY:

Refer to “Sample Integrity in Chemistry” write up in “Policies and Procedures” manual

SPECIMEN HANDLING

SPECIAL INSTRUCTIONS FOR SPECIMEN HANDLING AS DESIGNATED BY THIS LABORATORY:

Refer to “Sample Integrity in Chemistry” write up in “Policies and Procedures” manual

REAGENTS

CONTENTS

Each kit contains the following items:
One BARB Reagent Cartridge (1 x 250 tests)

VOLUMES PER TEST

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Volume</td>
<td>10 µL</td>
</tr>
<tr>
<td>Total Reagent Volume</td>
<td>250 µL</td>
</tr>
<tr>
<td>Cartridge Volumes</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>200 µL</td>
</tr>
<tr>
<td>B</td>
<td>50 µL</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
</tr>
</tbody>
</table>

Antibody/Substrate Reagent

Enzyme Conjugate Reagent

REACTIVE INGREDIENTS

REAGENT CONSTITUENTS

Antibody/Substrate Reagent

- Monoclonal anti-barbiturates Antibody (mouse)
- Glucose-6-phosphate (G6P)
- Nicotinamide adenine dinucleotide (NAD)
- Tris buffer

Enzyme Conjugate Reagent

69 mL

18 mL
Glucose-6-phosphate dehydrogenase (G6PDH) labeled with barbituric acid
Tris buffer
Also non-reactive chemicals necessary for optimal system performance.

⚠️ CAUTION

Sodium azide preservative may form explosive compounds in metal drain lines. See National Institute for Occupational Safety and Health Bulletin: Explosive Azide Hazards (8/16/76).

MATERIALS NEEDED BUT NOT SUPPLIED WITH REAGENT KIT
SYNCHRON Systems DAT Negative Urine Calibrator (0 ng/mL secobarbital)
SYNCHRON Systems DAT Multi-Drug Low Urine Calibrator (200 ng/mL secobarbital)
SYNCHRON Systems DAT Multi-Drug High Urine Calibrator (1000 ng/mL secobarbital)
SYNCHRON Systems DAT Multi-Drug Low Urine Control (150 ng/mL secobarbital)
SYNCHRON Systems DAT Multi-Drug High Urine Control (300 ng/mL secobarbital)

REAGENT PREPARATION
No preparation is required.

ACCEPTABLE REAGENT PERFORMANCE
The acceptability of a reagent is determined by successful calibration and by ensuring that quality control results are within acceptance criteria. Refer to the Quality Control section of this chemistry information sheet for Substance Abuse and Mental Health Services Administration (SAMHSA) guidelines.

REAGENT STORAGE AND STABILITY
BARB reagent when stored unopened at +2°C to +8°C, will remain stable until the expiration date printed on the cartridge label. Once opened, the reagent is stable for 90 days at +2°C to +8°C unless the expiration date is exceeded. DO NOT FREEZE.

REAGENT STORAGE LOCATION:
Chemistry section, room L568. Refer to reagent "map" on Chemistry refrigerator #8.

CALIBRATION

CALIBRATOR REQUIRED
SYNCHRON Systems DAT Negative Urine Calibrator (0 ng/mL secobarbital)
SYNCHRON Systems DAT Multi-Drug Low (cutoff) Urine Calibrator (200 ng/mL secobarbital)
SYNCHRON Systems DAT Multi-Drug High Urine Calibrator (1000 ng/mL secobarbital)

CALIBRATOR PREPARATION
No preparation is required.
CALIBRATOR STORAGE AND STABILITY

SYNCHRON® Systems Drugs of Abuse Testing (DAT) Urine Calibrators are stable until the expiration date printed on the calibrator bottles if stored capped in the original containers at +2°C to +8°C.

⚠️ CAUTION

Urine is not known to transmit infectious disease such as Hepatitis or HIV. However, because this product contains material of human origin, it should be handled as though capable of transmitting infectious diseases. The United States Food and Drug Administration recommends such samples be handled as specified in the Centers for Disease Control’s Biosafety Level 2 guidelines.

CALIBRATOR STORAGE LOCATION:

Chemistry section, room L568. Refer to reagent “map” on Chemistry refrigerator #8.

CALIBRATION INFORMATION

1. The DAT assays require three levels of calibrators. The calibration measures the separation between calibrators to ensure reagent integrity.

 NOTICE

 The calibration factor generated is non-functional for sample result calculation.

2. The system must have a valid calibrator cutoff value in memory before controls or patient samples can be run. The cutoff value for each DAT chemistry represents the mean reaction rate of the Low Calibrator, and is reported in mA/min units on patient and control reports. Cutoff values are stored in memory until the next successful calibration.

3. Under typical operating conditions the BARB reagent cartridge must be calibrated every 14 days and also with certain parts replacements or maintenance procedures, as defined in the SYNCHRON LX Maintenance Manual and Instrument Log, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual. This assay has within-lot calibration available. Refer to the SYNCHRON LX Operations Manual, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual for information on this feature.

4. For detailed calibration instructions, refer to the SYNCHRON LX Operations Manual, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual.

5. The system will automatically perform checks on the calibration and produce data at the end of calibration. In the event of a failed calibration, the data will be printed with error codes and the system will alert the operator of the failure. For information on error codes, refer to the SYNCHRON LX Diagnostics and Troubleshooting Manual, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual.

TRACEABILITY

For Traceability information refer to the Calibrator instructions for use.
QUALITY CONTROL

Good laboratory practices suggest the use of control specimens to ensure proper assay performance. Each analytical run should include controls with levels 25% above and 25% below the cutoff threshold of each drug, as well as negative specimens certified to contain no drug. In addition, these controls should be run with each new calibration, and after specific maintenance or troubleshooting procedures as detailed in the appropriate system manual. More frequent use of controls or the use of additional controls is left to the discretion of the user based on good laboratory practices or laboratory accreditation requirements and applicable laws.

The following controls should be prepared and used in accordance with the package inserts. Discrepant quality control results should be evaluated by your facility.

TABLE 1 QUALITY CONTROL MATERIAL

<table>
<thead>
<tr>
<th>CONTROL NAME</th>
<th>SAMPLE TYPE</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Rad S10 and S20 vials in use kept refrigerated after thawing. Unopened S10 and S20 kept frozen until just before use. Refer to “DXC 800 Control Analysis” in DXC 800 procedure manual for other control material used and storage. Control preparations and acceptance of QC results are in “Policies and Procedures” manual</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TESTING PROCEDURE(S)

1. If necessary, load the reagent onto the system.
2. After reagent load is completed, calibration may be required.
3. Program samples and controls for analysis.
4. After loading samples and controls onto the system, follow the protocols for system operations.

For detailed testing procedures, refer to the SYNCHRON LX Operations Manual, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual.

RESULTS INTERPRETATION

The system performs all calculations internally to produce the final qualitative result, reported as POSITIVE or NEGATIVE. The qualitative result is based on a comparison of the sample rate to the calibrated cutoff rate; a sample rate greater than or equal to the cutoff rate is reported as POSITIVE. A POSITIVE result (≥200 ng/mL) from this assay indicates only the presence of barbiturates and does not necessarily correlate with the extent of physiological and psychological effects. A NEGATIVE test result indicates that barbiturates are either not present, or are present at levels below the cutoff threshold of the test.

REPORTING RESULTS

Equivalency between the SYNCHRON LX and UniCel DxC 600/800 Systems has been established. Chemistry results between these systems are in agreement and data from representative systems may be shown.
PROCEDURAL NOTES

LIMITATIONS

1. The test is designed for use with human urine only.
2. Do not dilute the urine samples since this is a qualitative assay. Dilution of samples may produce erroneous results.
3. Interference has been demonstrated from mefenamic acid, a nonopioid analgesic.⁹
4. Adulteration of the urine sample may cause erroneous results. Alteration of a urine specimen may be detected by checking the appearance, temperature, pH specific gravity, and creatinine levels of a sample.⁵ If adulteration is suspected, obtain another sample and forward both specimens to the laboratory for testing.
5. An effort should be made to keep pipetted samples free from gross debris. It is recommended that highly turbid specimens be centrifuged before analysis.

Note: For screening assays of this type, only POS or NEG is reported. Occasionally error codes, e.g. Reaction Rate Hi/Low, Blank Rate Hi/Low, Reaction ABS Hi/Low may be sent from the DXC. The error messages may be due to sample integrity or a possible interfering substance. Rarely, the error may be due to bubbles in the reagent. Whenever an error code is generated, repeat the test. If the repeat assay generates the same DXC error code, in Sunquest send English Text code INTC “Interfering Substance, unable to do” as the result. Do not dilute the sample.

PERFORMANCE CHARACTERISTICS

RELATIVE SENSITIVITY AND SPECIFICITY

Seventy-nine clinical urine specimens were collected and tested. One hundred percent agreement was obtained between the SYNCHRON LX System and the SYNCHRON CX7 DELTA. The cutoff value of the SYNCHRON Systems Barbiturates assay is 200 ng/mL.¹⁰

TABLE 2 SYNCHRON LX VS. SYNCHRON CX7 DELTA

<table>
<thead>
<tr>
<th>BARB</th>
<th>SYNCHRON LX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>SYNCHRON</td>
<td>40</td>
</tr>
<tr>
<td>DELTA</td>
<td>CX7</td>
</tr>
<tr>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
</tbody>
</table>

Relative Sensitivity: 100%
Relative Specificity: 100%
Overall Agreement: 100%
CROSS REACTIVITY

Barbiturates and various potential interfering substances in a human urine matrix were tested for cross-reactivity with the SYNCHRON Systems BARB assay. The following table summarizes the results obtained at the concentrations tested for each potential cross-reactant.

Table 3 Cross Reactivity

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>CONCENTRATION (µg/mL)</th>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secobarbital (cutoff)</td>
<td>0.2</td>
<td>Positive</td>
</tr>
<tr>
<td>Alphenal</td>
<td>0.25</td>
<td>Positive</td>
</tr>
<tr>
<td>Amobarbital</td>
<td>0.3</td>
<td>Positive</td>
</tr>
<tr>
<td>Aprobarbital</td>
<td>0.2</td>
<td>Positive</td>
</tr>
<tr>
<td>Barbital</td>
<td>1.5</td>
<td>Positive</td>
</tr>
<tr>
<td>Butabarbital</td>
<td>0.25</td>
<td>Positive</td>
</tr>
<tr>
<td>Butalbital</td>
<td>0.4</td>
<td>Positive</td>
</tr>
<tr>
<td>Butethal</td>
<td>0.3</td>
<td>Positive</td>
</tr>
<tr>
<td>Diallylbarbital</td>
<td>0.6</td>
<td>Positive</td>
</tr>
<tr>
<td>Pentobarbital</td>
<td>0.5</td>
<td>Positive</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>0.8</td>
<td>Positive</td>
</tr>
<tr>
<td>Talbutal</td>
<td>0.08</td>
<td>Positive</td>
</tr>
<tr>
<td>Thiopental</td>
<td>0.8</td>
<td>Positive</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Acetylsalicylic Acid</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Albuterol</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>d-Amphetamine</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Caffeine</td>
<td>100</td>
<td>Negative</td>
</tr>
<tr>
<td>Codeine</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>500</td>
<td>Negative</td>
</tr>
<tr>
<td>Glutethimide</td>
<td>80</td>
<td>Negative</td>
</tr>
<tr>
<td>5-OH-Phenyl-5-phenyl-hydantoin (HPPH)</td>
<td>500</td>
<td>Negative</td>
</tr>
<tr>
<td>Meperidine</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Methadone</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Methsuximide</td>
<td>100</td>
<td>Negative</td>
</tr>
<tr>
<td>Morphine</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Normethsuximide</td>
<td>100</td>
<td>Negative</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>500</td>
<td>Negative</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>1000</td>
<td>Negative</td>
</tr>
<tr>
<td>Phenytoin (DPH)</td>
<td>500</td>
<td>Negative</td>
</tr>
<tr>
<td>Propoxyphene</td>
<td>1000</td>
<td>Negative</td>
</tr>
</tbody>
</table>
PRECISION

The following estimates of within-run imprecision were obtained when 20 replicates of the Negative Calibrator, Control 1 (150 ng/mL), Calibrator 1 (200 ng/mL), Control 2 (300 ng/mL) and Calibrator 2 (1000 ng/mL) were assayed on a properly operated and maintained SYNCHRON LX System.

TABLE 4 TYPICAL WITHIN-RUN IMPRECISION

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>MEAN RATE (mA/min)</th>
<th>1 SD (mA/min)</th>
<th>% CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Cal</td>
<td>301</td>
<td>2.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Control 1</td>
<td>367</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Cal 1</td>
<td>411</td>
<td>2.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Control 2</td>
<td>440</td>
<td>3.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Cal 2</td>
<td>476</td>
<td>2.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Each laboratory should characterize their own instrument performance for comparison purposes. Instruments operated and maintained according to manufacturer’s instructions should exhibit a within-run coefficient of variation of ≤ 2.0% for all sample levels.

NOTICE

These degrees of precision and equivalency were obtained in typical testing procedures on a SYNCHRON LX® System and are not intended to represent the performance specifications for this reagent.

ADDITIONAL INFORMATION

For more detailed information on SYNCHRON LX Systems or UniCel DxC Systems, refer to the appropriate system manual.

SHIPPING DAMAGE

If damaged product is received, notify your Beckman Coulter Clinical Support Center.
REFERENCES

a It is possible that other substances and/or factors (e.g. technical or procedural) not listed above may interfere with the test and cause false results. Data shown was collected using SYNCHRON CX Systems. Equivalency between SYNCHRON LX Systems has been established by Deming regression analysis to SYNCHRON CX Systems.