SYNCHRON® System(s)
Chemistry Information Sheet

AST
Aspartate
Aminotransferase
REF (200 tests/cartridge) 442665
REF (400 tests/cartridge) 476831

For In Vitro Diagnostic Use

ANNUAL REVIEW

Reviewed by: ____________________________ Reviewed by: ____________________________ Date: ____________________________
Refer to coversheet in front of method

PRINCIPLE

INTENDED USE

AST reagent, when used in conjunction with SYNCHRON LX® System(s), UniCel® DxC 600/800 System(s), is intended for the quantitative determination of aspartate aminotransferase activity in human serum or plasma.

CLINICAL SIGNIFICANCE

Aspartate aminotransferase measurements are used in the diagnosis and treatment of certain types of liver and heart disease.

METHODOLOGY

The AST reagent is used to measure aspartate aminotransferase activity by an enzymatic rate method.\(^1\)\(^2\) In the assay reaction, the AST catalyzes the reversible transamination of L-aspartate and \(\alpha\)-ketoglutarate to oxaloacetate and L-glutamate. The oxaloacetate is then reduced to malate in the presence of malate dehydrogenase (MDH) with the concurrent oxidation of \(\beta\)-Nicotinamide Adenine Dinucleotide (reduced form) (NADH) to \(\beta\)-Nicotinamide Adenine Dinucleotide (NAD).

The SYNCHRON® System(s) automatically proportions the appropriate sample and reagent volumes into a cuvette. The ratio used is one part sample to 11 parts reagent. The system monitors the rate of change in absorbance at 340 nanometers over a fixed-time interval. This rate of change in absorbance is directly proportional to the activity of AST in the sample and is used by the SYNCHRON® System(s) to calculate and express the AST activity.

CHEMICAL REACTION SCHEME

\[
\begin{align*}
\text{L-Aspartate} + \alpha\text{-ketoglutarate} & \xrightarrow{\text{AST}} \text{Oxaloacetate} + \text{L-glutamate} \\
\text{Oxaloacetate} + \text{NADH} + \text{H}^+ & \leftrightarrow \text{Malate} + \text{NAD}^+
\end{align*}
\]
SPECIMEN

TYPE OF SPECIMEN

Biological fluid samples should be collected in the same manner routinely used for any laboratory test. Freshly drawn serum or plasma are the specimens of choice. Acceptable anticoagulants are listed in PROCEDURAL NOTES section of this chemistry information sheet. Whole blood is not recommended for use as a sample.

SPECIMEN STORAGE AND STABILITY

1. Tubes of blood are to be kept closed at all times and in a vertical position. It is recommended that the serum or plasma be physically separated from contact with cells within two hours from the time of collection.

2. Separated serum or plasma should not remain at room temperature longer than 8 hours. If assays are not completed within 8 hours, serum or plasma should be stored at +2°C to +8°C. If assays are not completed within 48 hours, or the separated sample is to be stored beyond 48 hours, samples should be frozen at -15°C to -20°C. Frozen samples should be thawed only once. Analyte deterioration may occur in samples that are repeatedly frozen and thawed.

ADDITIONAL SPECIMEN STORAGE AND STABILITY CONDITIONS AS DESIGNATED BY THIS LABORATORY:

Refer to "Sample Integrity in Chemistry" write up in "Policies and Procedures" manual

SAMPLE VOLUME

The optimum volume, when using a 0.5 mL sample cup, is 0.3 mL of sample. For optimum primary sample tube volumes and minimum volumes, refer to the Primary Tube Sample Template for your system.

CRITERIA FOR UNACCEPTABLE SPECIMENS

Refer to the PROCEDURAL NOTES section of this chemistry information sheet for information on unacceptable specimens.
Criteria for sample rejection as designated by this laboratory:

Refer to “Sample Integrity in Chemistry” write up in “Policies and Procedures” manual

PATIENT PREPARATION

SPECIAL INSTRUCTIONS FOR PATIENT PREPARATION AS DESIGNATED BY THIS LABORATORY:

Refer to “Sample Integrity in Chemistry” write up in “Policies and Procedures” manual

SPECIMEN HANDLING

SPECIAL INSTRUCTIONS FOR SPECIMEN HANDLING AS DESIGNATED BY THIS LABORATORY:

Refer to “Sample Integrity in Chemistry” write up in “Policies and Procedures” manual

REAGENTS

CONTENTS

Each kit contains the following items:

Two Aspartase Aminotransferase Reagent Cartridges (2 x 200 tests) or (2 x 400 tests and two bottles of AST [A-reagent])

VOLUMES PER TEST

<table>
<thead>
<tr>
<th>Sample Volume</th>
<th>23 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDAC Sample Volume</td>
<td>3 µL</td>
</tr>
<tr>
<td>Total Reagent Volume</td>
<td>250 µL</td>
</tr>
<tr>
<td>Cartridge Volumes</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>242 µL</td>
</tr>
<tr>
<td>B</td>
<td>8 µL</td>
</tr>
<tr>
<td>C</td>
<td>--</td>
</tr>
</tbody>
</table>

REACTIVE INGREDIENTS

REAGENT CONSTITUENTS

α-Ketoglutarate 16 mmol/L
Malate dehydrogenase (MDH) >600 IU/L
L-Aspartate 218 mmol/L
NADH 0.18 mmol/L

Also non-reactive chemicals necessary for optimal system performance.
Sodium azide preservative may form explosive compounds in metal drain lines. See National Institute for Occupational Safety and Health Bulletin: Explosive Azide Hazards (8/16/76).

Avoid skin contact with reagent. Use water to wash reagent from skin.

EUROPEAN HAZARD CLASSIFICATION

Aspartate Aminotransferase Reagent Xn;R22 Harmful if swallowed.
(Compartiment B) S37/39 Wear suitable gloves and eye/face protection.

MATERIALS NEEDED BUT NOT SUPPLIED WITH REAGENT KIT

At least two levels of control material
Saline

REAGENT PREPARATION

For P/N 442665 (200 tests): Transfer all the contents of the smallest reagent compartment (C) into the largest reagent compartment (A).

For P/N 476831 (400 tests): Transfer all the contents of one AST (A-reagent) bottle into the largest reagent compartment (A).

Replace the cartridge caps and gently invert the cartridge several times to ensure adequate mixing.

ACCEPTABLE REAGENT PERFORMANCE

The acceptability of a reagent is determined by ensuring that quality control results are within your facility's acceptance criteria.

REAGENT STORAGE AND STABILITY

AST reagent when stored unopened at +2°C to +8°C will obtain the shelf-life indicated on the cartridge label. Once prepared, the reagent is stable for 30 days at +2°C to +8°C unless the expiration date is exceeded. DO NOT FREEZE.

REAGENT STORAGE LOCATION:

Chemistry section, room L568. Refer to reagent "map" on Chemistry refrigerator #6.

CALIBRATION

CALIBRATOR REQUIRED

Calibration is not required.
TRACEABILITY

This measurand (analyte) is traceable to the manufacturer's selected Measurement Procedure as described in the Methodology section.

QUALITY CONTROL

At least two levels of control material, normal and abnormal, should be analyzed daily. In addition, these controls should be run with each new reagent cartridge and after specific maintenance or troubleshooting procedures as detailed in the appropriate system manual. More frequent use of controls or the use of additional controls is left to the discretion of the user based on good laboratory practices or laboratory accreditation requirements and applicable laws.

The following controls should be prepared and used in accordance with the package inserts. Discrepant quality control results should be evaluated by your facility.

TABLE 1 QUALITY CONTROL MATERIAL

<table>
<thead>
<tr>
<th>CONTROL NAME</th>
<th>SAMPLE TYPE</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitrol levels 1 and 2 vials in use kept refrigerated after thawing. Unopened Monitrol kept frozen until just before use. Refer to “DxC 800 Control Analysis” in DxC 800 procedure manual for other control material used and storage. Control preparations and acceptance of QC results are in “Policies and Procedures” manual</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TESTING PROCEDURE(S)

1. If necessary prepare reagent as defined in the Reagent Preparation section of this chemistry information sheet and load the reagent onto the system.
2. Program samples and controls for analysis.
3. After loading samples and controls onto the system, follow the protocols for system operations.

For detailed testing procedures, refer to the SYNCHRON LX Operations Manual, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual.

CALCULATIONS

The SYNCHRON® System(s) performs all calculations internally to produce the final reported result. The system will calculate the final result for sample dilutions made by the operator when the dilution factor is entered into the system during sample programming.

REPORTING RESULTS

Equivalency between the SYNCHRON LX and UniCel DxC 600/800 Systems has been established. Chemistry results between these systems are in agreement and data from representative systems may be shown.

REFERENCE INTERVALS

Each laboratory should establish its own reference intervals based upon its patient population. The reference interval listed below was taken from literature and a study performed on SYNCHRON Systems.\(^5\)
TABLE 2 REFERENCE INTERVALS

<table>
<thead>
<tr>
<th>INTERVALS</th>
<th>SAMPLE TYPE</th>
<th>CONVENTIONAL UNITS</th>
<th>S. I. UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td>Serum or Plasma</td>
<td>8 – 20 IU/L</td>
<td>0.1 – 0.3 μkat/L</td>
</tr>
<tr>
<td>SYNCHRON</td>
<td>Serum or Plasma</td>
<td>15 – 41 IU/L</td>
<td>0.3 – 0.7 μkat/L</td>
</tr>
</tbody>
</table>

Refer to References (6,7,8) for guidelines on establishing laboratory-specific reference intervals.

Note:
2. Normal range for 1 to 6 year old children adapted from Beckman Coulter’s “Pediatric Reference Range Guidelines for Synchron Systems” Bulletin 9345
4. Normal range for adults was determined by testing 270 male and female healthy blood donors at UCSF.

ADDITIONAL REPORTING INFORMATION AS DESIGNATED BY THIS LABORATORY:

Refer to “DXC 800 Linearity and Reportable Range” chart in Technical Notes section of DXC 800 Procedure manual.

PROCEDURAL NOTES

ANTICOAGULANT TEST RESULTS

1. If plasma is the sample of choice, the following anticoagulants were found to be compatible with this method based on a study of 20 healthy volunteers:

Table 3 Acceptable Anticoagulants

<table>
<thead>
<tr>
<th>ANTICOAGULANT</th>
<th>LEVEL TESTED FOR IN VITRO INTERFERENCE</th>
<th>AVERAGE PLASMA-SERUM BIAS (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium Heparin</td>
<td>29 Units/mL</td>
<td>NSI</td>
</tr>
<tr>
<td>Lithium Heparin</td>
<td>29 Units/mL</td>
<td>NSI</td>
</tr>
<tr>
<td>Sodium Heparin</td>
<td>29 Units/mL</td>
<td>NSI</td>
</tr>
</tbody>
</table>

2. The following anticoagulant was found to be incompatible with this method:

Table 4 Incompatible Anticoagulants

<table>
<thead>
<tr>
<th>ANTICOAGULANT</th>
<th>LEVEL TESTED FOR IN VITRO INTERFERENCE</th>
<th>PLASMA-SERUM BIAS (IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Oxalate/Sodium Fluoride</td>
<td>4.0 / 5.0 mg/mL</td>
<td>± 7.0</td>
</tr>
<tr>
<td>Sodium Citrate</td>
<td>6.6 mg/mL</td>
<td>- 11.0</td>
</tr>
</tbody>
</table>
LIMITATIONS

Samples with extremely high enzyme activity (>12,000 IU/L or >200.04 µkat/L) may consume all of the NADH substrate before the first absorbance measurement is taken after sample addition. These samples can report either very low enzyme activities or suppress the result as "OIR LO". These samples should be diluted 1:20 with saline and rerun.

INTERFERENCES

1. The following substances were tested for interference with this methodology:

Table 5 Interferences:

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>SOURCE</th>
<th>LEVEL TESTED</th>
<th>OBSERVED EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin (unconjugated)</td>
<td>Bovine</td>
<td>30 mg/dL</td>
<td>NSI</td>
</tr>
<tr>
<td>Lipemia</td>
<td>Intralipid®</td>
<td>500 mg/dL</td>
<td>+7 @ 67 IU/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSI @ 307 IU/L</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>Pyruvic acid</td>
<td>2.4 mg/dL</td>
<td>+8 @ 61 IU/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0 mg/dL</td>
<td>NSI @ 286 IU/L</td>
</tr>
</tbody>
</table>

2. Samples showing evidence of hemolysis should not be used. Hemolysis may cause falsely elevated results.

3. Refer to References (9,10,11) for other interferences caused by drugs, disease and preanalytical variables.

PERFORMANCE CHARACTERISTICS

Analytic Range

The SYNCHRON® System(s) method for the determination of this analyte provides the following analytical range:

TABLE 6 ANALYTICAL RANGE

<table>
<thead>
<tr>
<th>SAMPLE TYPE</th>
<th>CONVENTIONAL UNITS</th>
<th>S.I. UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum or Plasma</td>
<td>5 – 400 IU/L</td>
<td>0.1 – 6.7 µkat/L</td>
</tr>
<tr>
<td>Serum or Plasma (ORDAC)</td>
<td>350 – 2600 IU/L</td>
<td>5.8 – 43.0 µkat/L</td>
</tr>
</tbody>
</table>

Samples with activities exceeding the high end of the analytical range should be rerun with ORDAC enabled or diluted with saline and reanalyzed.

REPORTABLE RANGE (as determined on site):

TABLE 7 REPORTABLE RANGE

<table>
<thead>
<tr>
<th>SAMPLE TYPE</th>
<th>CONVENTIONAL UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum or Plasma</td>
<td>5 – 2600 IU/L, dilute if >2600 IU/L</td>
</tr>
</tbody>
</table>

SENSITIVITY

Sensitivity is defined as the lowest measurable concentration which can be distinguished from zero with 95% confidence. Sensitivity for AST determination is 5 IU/L (0.08 µkat/L).
EQUIVALENCY

Equivalency was assessed by Deming regression analysis of patient samples to accepted clinical methods.

Serum or Plasma (in the range of 7 to 390 IU/L):

\[Y \text{ (SYNCHRON LX Systems)} = 0.941X + 3.57 \]
\[N = 77 \]
\[\text{MEAN (SYNCHRON LX Systems)} = 92.6 \]
\[\text{MEAN (SYNCHRON CX7 DELTA)} = 94.6 \]
\[\text{CORRELATION COEFFICIENT (r)} = 0.9926 \]

Refer to References (12) for guidelines on performing equivalency testing.

PRECISION

A properly operating SYNCHRON® System(s) should exhibit precision values less than or equal to the following:

TABLE 8 PRECISION VALUES

<table>
<thead>
<tr>
<th>TYPE OF PRECISION</th>
<th>SAMPLE TYPE</th>
<th>1 SD</th>
<th>CHANGEOVER VALUE</th>
<th>% CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IU/L</td>
<td>µkat/L</td>
<td>IU/L</td>
</tr>
<tr>
<td>Within-run</td>
<td>Serum/Plasma</td>
<td>3.0</td>
<td>0.05</td>
<td>85.7</td>
</tr>
<tr>
<td></td>
<td>Serum/Plasma (ORDAC)</td>
<td>NA*</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>Serum/Plasma</td>
<td>4.5</td>
<td>0.08</td>
<td>85.7</td>
</tr>
<tr>
<td></td>
<td>Serum/Plasma (ORDAC)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Refer to References (13) for guidelines on performing precision testing.

Comparative performance data for a SYNCHRON LX® System evaluated using the NCCLS Proposed Guideline EP5-T2 appears in the table below. Each laboratory should characterize their own instrument performance for comparison purposes.

TABLE 9 NCCLS EP5-T2 PRECISION ESTIMATE METHOD

<table>
<thead>
<tr>
<th>TYPE OF IMPRECISION</th>
<th>SAMPLE TYPE</th>
<th>No. Systems</th>
<th>No. Data Points</th>
<th>Test Mean Value (IU/L)</th>
<th>EP5-T2 Calculated Point Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serum</td>
<td>Control 1</td>
<td>1</td>
<td>80</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>Control 2</td>
<td>1</td>
<td>80</td>
<td>175.4</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>Control 3</td>
<td>1</td>
<td>80</td>
<td>323.8</td>
</tr>
<tr>
<td>Within-run</td>
<td>Serum</td>
<td>Control 1</td>
<td>1</td>
<td>80</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>Control 2</td>
<td>1</td>
<td>80</td>
<td>175.4</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>Control 3</td>
<td>1</td>
<td>80</td>
<td>323.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% CV</td>
</tr>
</tbody>
</table>
NOTICE

These degrees of precision and equivalency were obtained in typical testing procedures on a SYNCHRON LX® System and are not intended to represent the performance specifications for this reagent.

ADDITIONAL INFORMATION

For more detailed information on SYNCHRON LX Systems or UniCel DxC Systems, refer to the appropriate system manual.

SHIPPING DAMAGE

If damaged product is received, notify your Beckman Coulter Clinical Support Center.
REFERENCES

Beckman Coulter, Inc., 250 S. Kraemer Blvd., Brea, CA 92821
ENDNOTES

a Data shown was collected using SYNCHRON CX Systems. Equivalency between SYNCHRON LX Systems has been established by Deming regression analysis to SYNCHRON CX Systems.

b NSI = No Significant Interference (within ±6.0 IU/L or 7%).

c Data shown was collected using SYNCHRON CX Systems. Equivalency between SYNCHRON LX Systems has been established by Deming regression analysis to SYNCHRON CX Systems.

d Bias is based on worst case instead of average. Plus (+) or minus (-) signs in this column signify positive or negative bias.

e Data shown was collected using SYNCHRON CX Systems. Equivalency between SYNCHRON LX Systems has been established by Deming regression analysis to SYNCHRON CX Systems.

f Plus (+) or minus (-) signs in this column signify positive or negative interference.

g NSI = No Significant Interference (within ± 6 IU/L or 7%).

h Intralipid is a registered trademark of KabiVitrum, Inc., Clayton, NC 27250.

i Overrange Detection and Correction. Refer to the SYNCHRON LX Operations Manual, or the UniCel DxC 600/800 System Instructions For Use (IFU) manual for more details on this function.

j When the mean of the test precision data is less than or equal to the changeover value, compare the test SD to the SD guideline given above to determine the acceptability of the precision testing. When the mean of the test precision data is greater than the changeover value, compare the test % CV to the guideline given above to determine acceptability. Changeover value = (SD guideline/CV guideline) x 100.

k NA = Not applicable.

l The point estimate is based on the data from one system, run for twenty days, two runs per day, two observations per run on an instrument operated and maintained according to the manufacturer’s instructions.